ESE355: VLSI System Design

Instructor: Dr. Alex Doboli, adoboli@ece.sunysb.edu

TA: TBA

Class schedule:

Lab:

Office hours: Monday and Wed 1-3pm, Light Engineering Bldg. 261

Catalog Description: Introduces techniques and tools for scalable VLSI design and analysis.

Emphasis is on physical design and on performance analysis. Includes

extensive lab experiments and hand-on usage of CAD tools.

Course Designation: Elective for EE and CE

Text Book: Jan Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits:

A Design Perspective", Prentice Hall, 2003.

Reference: Neil Weste, D. Harris, "CMOS VLSI Design", Third Edition, 2005

Prerequisites: ESE218 **Corequisite:** none

Goals: The course introduces techniques and tools for scalable VLSI design and

analysis. The emphasis is on physical design and on performance analysis. The course includes extensive lab experiments, a mini project and hands-on usage of

CAD tools.

Objectives: Upon completion of this course, students are able to develop, layout and

simulate fabricatable designs of VLSI building blocks, such as registers, arithmetic units, finite state machines, and medium-scale VLSI chips.

Students are knowledgeable to design digital circuits

optimized for timing and area constraints.

Topics Covered:

Week 1.	Introduction to design of VLSI systems and circuits. The MOSFET				
	Transistor . Static behavior. Dynamic behavior. Secondary effects.				
	SPICE models for the MOS transistor. Small-signal models.				
Week 2.	The CMOS Inverter. Static behavior.				
Week 3.	The CMOS Inverter. Dynamic behavior. Propagation delay. Power				
	consumption.				
Week 4.	Combinational Logic Gates. Complementary CMOS design				
Week 5.	Combinational Logic Gates. Complementary CMOS design. Layout				
	techniques for complex gates. Bit-slice design. Pipelining.				
Week 6.	Combinational Logic Gates. Dynamic CMOS. Principles. Performance.				
	Cascading.				

Week 7.	Combinational Logic Gates. Dynamic CMOS. Principles. Performance.				
	Cascading.				
Week 8.	Design of Sequential Circuits. flip-flops. master-slave ff. CMOS static				
	flip-flops. Implementation with PLA structures. Application.				
Week 9.	Design of Sequential Circuits. flip-flops. master-slave ff. CMOS static				
	flip-flops. Implementation with PLA structures. Application.				
Week 10.	Design of Sequential Circuits. Dynamic sequential circuits. Pseudo				
	static latch. Dynamic two-phase flip flop. C2MOS latch. NORA-CMOS				
	structure.				
Week 11.	Design for Testability.				
Week 12.	Interconnect. Crosstalk. Resistive parasitic. Inductive parasitic.				
	Packaging technology.				
Week 13.	Timing Issues in Digital Circuits. Clock Skew. Single & two-phase				
	clocking. countering of clock skew problems.				

Class/laboratory Schedule: 3 lecture hours and 3 laboratory hours per week.

Grading: Final Grade = $\underline{Homework_1} * 0.05 + \underline{Homework_2} * 0.1 + \underline{Homework_3} * 0.1 + \underline{Homework_4} * 0.1 + \underline{Mid-term} * 0.2 + \underline{Final} * 0.2 + \underline{Mini\ Project} * 0.2 + \underline{Course\ portfolio} * 0.05$

Exam schedule:

Midterm: Wednesday - Week 8, 10:40-11:35am.

Final exam: Exam week

Homework schedule:

	Points	Start date	Due date
Homework1	5	Mo Week 2	We Week 3
Homework 2	10	We Week 3	Fr Week 4
Homework 3	10	Fr Week 4	We Week 6
Homework 4	10	We Week 6	Mo Week 8